Telegram Group & Telegram Channel
Какие проблемы есть у рекуррентных нейронных сетей (RNN)?

RNN — это нейронные сети для работы с последовательностями (текстами, временными рядами). Они имеют механизм для запоминания предыдущих входных данных. Тем не менее они подвержены некоторым проблемам:

▪️Взрывающийся градиент.
Это ситуация, при которой градиент экспоненциально растёт вплоть до полной потери стабильности RNN. Если градиент становится бесконечно большим, нейросеть проявляет проблемы с производительностью.
▪️Исчезающий градиент.
Это ситуация, обратная предыдущей. В этом состоянии градиент приближается к нулю, что приводит к потере RNN способности эффективно обучаться по предложенным данным. Для рекуррентных нейронных сетей характерен высокий риск исчезающего или взрывающегося градиента при обработке длинных последовательностей данных.
▪️Медленное обучение.
В целом, для RNN требуются огромные вычислительные мощности, большой объём памяти и много времени, если речь идёт о значительном количестве текстов.

#junior
#middle



tg-me.com/ds_interview_lib/176
Create:
Last Update:

Какие проблемы есть у рекуррентных нейронных сетей (RNN)?

RNN — это нейронные сети для работы с последовательностями (текстами, временными рядами). Они имеют механизм для запоминания предыдущих входных данных. Тем не менее они подвержены некоторым проблемам:

▪️Взрывающийся градиент.
Это ситуация, при которой градиент экспоненциально растёт вплоть до полной потери стабильности RNN. Если градиент становится бесконечно большим, нейросеть проявляет проблемы с производительностью.
▪️Исчезающий градиент.
Это ситуация, обратная предыдущей. В этом состоянии градиент приближается к нулю, что приводит к потере RNN способности эффективно обучаться по предложенным данным. Для рекуррентных нейронных сетей характерен высокий риск исчезающего или взрывающегося градиента при обработке длинных последовательностей данных.
▪️Медленное обучение.
В целом, для RNN требуются огромные вычислительные мощности, большой объём памяти и много времени, если речь идёт о значительном количестве текстов.

#junior
#middle

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/176

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Библиотека собеса по Data Science | вопросы с собеседований from it


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA